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GENERALIZED SPECTRAL DONAIN ANALYSIS OF PLANAR STEUCTUEES HAVING SEMI-INFINITE GROUND PLANES
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Accurate, efficient techniques that utilize the
general Galerkin’s method in Fourier transform

domain are formulated to compute the quasi-TEM

parameters of planar structures having semi-
infinite strips. Examples include coplanar wave-

guides with and without the conductor backing and

microatrips with a parallel slot in the ground
plane. Computed results for typical cases of

symmetrical, nonsymmetrical, single and multiple
strip coplanar waveguide and microstrip-slot
structures are presented.

INTRODUCTION

This paper deala with the tiplementation of the

general Galerkin’s method in spectral domain for

the computation of the quasi-TEM parameters of a

class of planar structures that have coplanar
semi-infinite ground planes. Examples of such

structures include single and multiple strip co-

planar waveguides (CFW) with or without the con-
ductor backing and microstrips with a parallel

slot in the ground plane as shown in Hgure 1.
For the case of the coplanar waveguides, even

though the spectral domain full wave analyais haa

been conducted [1,2], the quasi-TEM analysis of
such structures has been confined either to ap-

proximate conformal mapping [3,4] or to finite

difference and other methods for shielded struc-

tures [5,6]. For the microstrip-slot structures,

the shielded structure has been analyzed for its

quasi-TEM parameters by using the spectral domain

technique [7] and the frequency-dependent para-

meters of the open structure have been computed by

using the method of lines [8,9]. The Galerkin’s

method in Fourier transform domain which has been
employed for the accurate, efficient computation

of the quasi-TEM parameters of many planar struc-

tures has not been used for the structures shown

in Figure 1 primarily because the static Green’s

function for these structures leads to the

Fredholm integral equation of the first kind with

a Cauchy-type singular kernel for which satis-
factory solution techniques have not been devel-

oped [10]. In this paper it is shown that this

equation can be solved by using the general

Galerkin method leading to accurate efficient
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computation of the quasi-TEM parameters of these

structures. lhe computed results are presented

for typical cases and compared with other results

wherever a meaningful comparison can be made.

THE SPECTKAL DOMAIN GREEN’S EUNCTIONS

The spectral domain Green’s functions inter-

relating the charges, potentials, and fields at

the surfaces must be set up in terms of variables

that are compatible with the implementation of the

general Galerkin method. Due to the semi-infinite

extensions of the ground strips, the integral

equations in space domain or the corresponding

algebraic equations in the Fourier tranaform

domain are aet up such that the unknown variable

that is to be expanded in terms of convenient

basis functions is defined over a finite interval

in space domain. For the structures shown in

Ngure 1, the defining Green’s functions in spec-

tral domain are set up as:

~(a,d) = ?(a)fix(a,d) (1)

for the CITJ’s, and

p2(aj O) =fi21(a)~l(a,d) +~22(a)~x2(o,a) , (2)

for the microatrip-slot structure.

For the caae of the CEW’S, the tangential electric

field in the slots is used as a “source” parameter

and for the microatrip-slot structures a hybrid
form formulation is used since two different

“source” parameters coexist, i.e., distributed

charges on the upper surface and the tangential

electric field on the lower surface are used as a
source function. These Green’s functions are

derived in a straightforward manner by writing the

solution of the transformed Poisson’s equation

with the given boundarv conditions and noting
that tix(a) ~ ja ~(a), and are found to be:

(l+#)+2srcoth I alh

Y(a) = -jcosgna
l+srcothlalh

for CkW of Figure la without conductor

and

?(a) = -j.osgna(l+ercothlalh)

(3)

backing,

(4)
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for CFW of Figure lb with conductor

fill(a) = ~
1

Ial(l+zrcothlalh)
o

backing, and

(5a)

R12(a) = -jc
1

r a(sinhlalh+srcoshlalh)
(5b)

-Er

X21(a) =
sinh a h+crcosh a h

(SC)

(l+c~)+2srcoth [a [h

fi22(a) = -jeosgna l%rcothlalh
(5d)

{
+1 ,a>O

where sgna =
-1 ,a<O”

SOLUTION METHOD

Because of the od~ symmetry of ~(a) for both cases

of the CFW’S and h (a) which results in a Cauchy-

21 in spacetype singular kerne domain, it is seen

that different spaces for electric field function

set and charge function set must be defined in

order to solve the associated integral equation by

utilizing the local basis

(LBAM).
approxhation method

We have used the LBAM, which is not with-

out its shortcmnings, simply because it is readily

adaptable to nonsymmetrical and multiple line

problsms. In order to illustrate the solution

method we consider the simplest case of a single

strip coplanar waveguide without the conductor

backing. By exploring the relationships between

charges, potential and electric field, the appro-

priate test function set found for chargea when

the basis function set for Ex is gate function

(piecewise constant), is the same gate function

set but defined on the intersecting segments as

shown in Figure 2 for a single line case. lhat

is, Ex is expanded in terms of gate functions as,

N N j xid~

Ex(x) = ~ ain(x-xi) or E=(a) = ~ aie n(a) (6)
i=l i=l

and the test function for charges,

j(xi+biz)ai(a),
fi(x)= II(x-xi-b/2) or %i(a)= e (7)

where

Substitution of (6) in (1) and applying Parseval’s

theorem to the left hand side after taking the
inner product with the test function set of (7)

leads to (for the discretization scheme of Figure

2a):

~ Kij aj = O, i=l,2, ..,nI
-l’nl%l+l’””’N-l

(8)
j=l

Potential across the slots,

‘1v= ~ a .-
j

; aj
j=l j=nl~l+l

where

-j(xi-xj+b/2)ada

‘ij
= l/(211) J- ?(a) fi2(a)e (9)

-m

In order to spe~d up the convergence process we
have decomposed Y(a) in a homogeneous part and the

remainder as in [11] leading to:

‘ij = -
‘o(~r) {Dn+l-2Dn+Dn_1 )+.o.r(I-.r)/.

m l-coth
o~ ~~2(a)sin(n+l/2 )ada (10)

with n ~ i-j and Dn ~ (n+l/2)log[ (n+l/2)bl.

Now ,
%

is easily evaluated leading to the solu-

tion o Eq. (8) for unknown coefficients a.’s, and

then the charged induced on the strip id deter-
mined by

‘lhl
Q=! [ ~ Kij)aj. (11)

j=l i=nl

It should be noted that the two possibilities

shown in Figure 2 for discretization lead to a

lower bound and an upper bound solution for charge

Q, and that the formulation scheme is readily
generalized to cover the multiple coupled coplanar

waveguide lines. ‘lhe formulations for the CFJ
with a conductor backing and microstrip-slot

structures are similar to the one presented above.

RESULTS

The quasi-TEM parameters (effective dielectric

constanta and impedances) of several typical

structures have been computed on a CDC 6400 com-

puter and a few examples are shown in Ngures 3

through 6. These examples were chosen to illus-

trate the versatility and the accuracy of the

techniques formulated in the paper. The computa-

tion time varies from case to case but is general-
ly in the range of 0.5 - 5 seconds for each compu-
tation shown in the figures.
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Fig.1 , Schematics of ‘(a) Copl;nar Waveguide (b) CPWwith
a conductor backing (c) Coupled microstrip slot
structure.
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Fig.2. Discretization schemes for electric field and
charges in a single strip CPW.
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Fig.3.Symmetric Coplanar Waveguide Parameters

Fig,3.Asymmetric Coplanar Waveguide parameters

Fig. 5.Nonsymmetrical Coupled CPU normal mode parameters.

Fig.6.(a)Deviations of microstrip parameters as a function of
slot width W/h=l.0,Gr=9.8 , ---from {8) forX=100h
(b)Couple~42 microstri
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