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GENERALIZED SPECTRAL DOMAIN ANALYSIS OF PLANAR STRUCTURES HAVING SEMI-INFINITE GROUND PLANES
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Accurate, efficient techniques that utilize the
general Galerkin's method in Fourier transform
domain are formulated to compute the quasi-TEM
parameters of planar structures having semi-
infinite strips. Examples include coplanar wave-
guides with and without the conductor backing and
microstrips with a parallel slot in the ground

plane. Computed results for typical cases of
symmetrical, nonsymmetrical, single and multiple
strip coplanar waveguide and microstrip~slot

structures are presented.

INTRODUCTION

This paper deals with the implementation of the
general Galerkin's method in spectral domain for
the computation of the quasi~TEM parameters of a
class of planar structures that have coplanar
semi-infinite ground planes. Examples of such
structures include single and multiple strip co-
planar waveguides (CPW) with or without the con-
ductor backing and microstrips with a parallel
slot in the ground plane as shown in Figure 1.
For the case of the coplanar waveguides, even
though the spectral domain full wave analysis has
been conducted ({[1,2], the quasi-TEM analysis of
such structures has been confined either to ap-
proximate conformal mapping [3,4] or to finite
difference and other methods for shielded struc-
tures [5,6]. For the microstrip-slot structures,
the shielded structure has been analyzed for its
quasi~TEM parameters by using the spectral domain
technique {7] and the frequency-dependent para-
meters of the open structure have been computed by
using the method of lines [8,9]. The Galerkin's
method in Fourier transform domain which has been
employed for the accurate, efficient computation
of the quasi-TEM parameters of many planar struc-
tures has not bheen used for the structures shown
in Figure 1 primarily because the static Green's
function for these structures 1leads to the
Fredholm integral equation of the first kind with
a Cauchy-type singular kernel for which satis-
factory solution techniques have not been devel-
oped [10]. In this paper it is shown that this
equation can be solved by wusing the general
Galerkin method leading to accurate efficient
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computation of the quasi-TEM parameters of these
structures, The computed results are presented
for typical cases and compared with other results
wherever a meaningful comparison can be made.

THE SPECTRAL DOMAIN GREEN'S FUNCTIONS

The spectral domain Green's functions inter-
relating the charges, potentials, and fields at
the surfaces must be set up in terms of variables
that are compatible with the implementation of the
general Galerkin method. Due to the semi-infinite

extensions of the ground strips, the integral
equations in space domain or the corresponding
algebraic equations 1Iin the Fourier transform

domain are set up such that the unknown variable
that is to be expanded in terms of convenient
basis functions is defined over a finite interval
in space domain. For the structures shown in
Figure 1, the defining Green's functions in spec—
tral domain are set up as:

pla,d) = H)E (o,d) ¢¥)
for the CPi's, and

$1(0d) = B ()b (a,d) + F ), (0E ,(0,0)

py(a, 0 =, (@)p; (0,d) + Hyp(0)E ,(0,0) , (D)

for the microstrip-slot structure.

For the case of the CPi's, the tangential electric
field in the slots is used as a "source" parameter
and for the microstrip-slot structures a hybrid
form formulation is used since two different
"source” parameters coexist, 1i.e., distributed
charges on the upper surface and the tangential
electric field on the lower surface are used as a
source function. These Green's functions are
derived in a straightforward manner by writing the
solution of the transformed Poisson's equation
with the given boundary conditions and noting
that ﬁx(a) = ja $(a), and are found to be:

(1+s:2 )+2s coth I a|h
T r
l+e coth [alh

for CA of Figure la without conductor backing,
and

(o) = -jsosgna (3)

o) = —-j eosgna(l-i-ercoth'alh) %)
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for CAWW of Figure 1b with conductor backing, and

~ 1
h ) = (5a)
11e e, [o[(T+e _coth[a]h]
- o 1
hlZ(a) - jer a(sinh'alhﬁ:rcoshlulh) (5b)
P21®) = (sImh[a[w¥e coshalh) (3e)
. (1+e§)+29rcothla.h
Byp(a) = ~3e sgna T+ _cothalh (54)

_ +1 a>0
where sgna = | -1 : a<0"

SOLUTION METHOD

Because of the odd symmetry of NY(a) for both cases
of the CPW's and ﬁz a) which results in a Cauchy-
type singular kerne2l in space domain, it is seen
that different spaces for electric field function
set and charge function set must be defined in
order to solve the associated integral equation by
utilizing the local basis approximation method
(LBAM). We have used the LBAM, which is not with-
out its shortcomings, simply because it is readily
adaptable to nonsymmetrical and multiple line
problems., In order to illustrate the solution
method we consider the simplest case of a single
strip coplanar waveguide without the conductor
backing. By exploring the relationships between
charges, potential and electric field, the appro-
priate test function set found for charges when
the basis function set for E, is gate functiom
(piecewise constant), is the same gate function
set but defined on the intersecting segments as
shown in Figure 2 for a single line case. That
is, E, is expanded in tems of gate functions as,

5 N ~ N jx,d
Ex(x) =i£1ain(x—xi] or Ez(a) =izlaie m(a) (6)
and the test function for charges,
N J(xy#b/2)a
£, (x)= N(x-x,~b/2) or £ (a)=e ma), (7)

where

1/b, for -b/2<x<b/2

H(a)= 2— sin 22 4
()= ba sin and 1(x) {0, otherwise

2
Substitution of (6) in (1) and applying Parseval's
theorem to the left hand side after taking the
inner product with the test function set of (7)
leads to (for the discretization scheme of Figure
2a):

N
jzlxij 3 = 0, i=1,2,..,n;~1,n,4m +1,..,8-1 (8)
Potential across the slots,
n N
v = Xl aj = -

%
j=1 j=n 4m +1

where

- (xi~xj+b/2 Ja

K,. = 1/(2n)

15 da (9)

[ Ui (a)e

In order to speed up the convergence process we
have decomposed Y(a) in a homogeneous part and the
remainder as in [11] leading to:

e, (1+e )
Ky =55 Pon

? (1-coth|a|n) =2
Of mr—c—otj';%l-m I"(a)sin(n+l/2)a da

with n & 1-j and D & (n+1/2)10g|(n+1/2)b

Now,
tion ot Eq. (8) for unknown coefficients a,'s, and

=20 4D __; J+e e (1-¢_)/n
(10)

.

is easily evaluated leading to the solu~

then the charged induced on the strip 13 deter-
mined by
N nl-lml
o= 1 (1w - av
j=1 i=n J

It should be noted that the two possibilities
showm in Figure 2 for discretization lead to a
lower bound and an upper bound solution for charge
Q, and that the formulation scheme is readily
generalized to cover the multiple coupled coplanar
waveguide lines. The formulations for the CP4
with a conductor backing and microstrip-slot
structures are similar to the one presented above.

RESULTS

The quasi—TEM parameters (effective dielectric
constants and impedances) of several typical
structures have been computed on a CDC 6400 com—
puter and a few examples are shown in Figures 3
through 6. These examples were chosen to illus-
trate the versatility and the accuracy of the
techniques formulated in the paper. The computa-
tion time varies from case to case but is general-
ly in the range of 0.5 ~ 5 seconds for each compu-
tation shown in the figures.
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Fig.3.Symmetric Coplanar Waveguide Parameters
Fig.3.Asymmetric Coplanar Waveguide parameters
Fig.5.Nonsymmetrical Coupled CPW normal mode parameters.
Fig.6.{a)Deviations of microstrip parameters as a function of

slot width W/h=1.0, Gr—9 8,
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